Nitrogen dioxide

 

NO2 is a reddish-brown gas that comes from the burning of fossil fuels. It has a strong smell at high levels. Nitrogen dioxide mostly comes from power plants and cars. Nitrogen dioxide is formed in two ways viz.—when nitrogen in the fuel is burned, or when nitrogen in the air reacts with oxygen at very high temperatures. Nitrogen dioxide can also react in the atmosphere to form ozone, acid rain, and particles. Nitrogen oxides are formed during high temperature combustion processes from the oxidation of nitrogen in the air or fuel. The principal source of nitrogen oxides - nitric oxide (NO) and nitrogen dioxide (NO2), collectively known as NOx - is road traffic, which is responsible for approximately half the emissions in Europe. NO and NO2 concentrations are therefore greatest in urban areas where traffic is heaviest. Other important sources are power stations, heating plants and industrial processes.





Nitrogen oxides are released into the atmosphere mainly in the form of NO, which is then readily oxidized to NO2 by reaction with ozone. Elevated levels of NOx occur in urban environments under stable meteorological conditions, when the air mass is unable to disperse. Whereas nitrogen dioxide (NO2) participates in the formation of ozone, nitrogen oxide (NO) destroys ozone to form oxygen (O2) and nitrogen dioxide (NO2). For this reason, ozone levels are not as high in urban areas (where high levels of NO are emitted from vehicles) as in rural areas. As the nitrogen oxides and hydrocarbons are transported out of urban areas, the ozone-destroying NO is oxidized to NO2, which participates in ozone formation.

Health Effects: Nitrogen dioxide has a variety of environmental and health impacts. It is a respiratory irritant, may exacerbate asthma and possibly increase susceptibility to infections. In the presence of sunlight, it reacts with hydrocarbons to produce photochemical pollutants such as ozone (see below). In addition, nitrogen oxides have a lifetime of approximately 1 day with respect to conversion to nitric acid. This nitric acid is in turn removed from the atmosphere by direct deposition to the ground, or transfer to aqueous droplets (e.g. cloud or rainwater), thereby contributing to acid deposition.